[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

lof 8

Subject: [gentoo-amd64] Re: Re: Wow! KDE 3.5.1 & Xorg 7.0 w/ Composite
From: Duncan <1i5t5.duncan@cox.net>

Date: Fri, 03 Feb 2006 09:28:29 -0700

To: gentoo-amd64@lists.gentoo.org

M ke Ownen posted
<8f 5ca2210602021712s53d33de5w6794f a384bbf 93a5@mi | . gnmi | . con», excer pted
bel ow, on Thu, 02 Feb 2006 17:12: 04 -0800

On 2/2/06, Duncan <1i5t5. duncan@ox. net> wrote:

http://menbers. cox. net/pu6lic. 1li nux. dunc4n/

Ni ce. Now | et us know your CFLAGS, and what tool chain versions you're
running : D

You probably didn't notice, as | had it commented out on the nmin index
page as | don't have the page created to actually list themyet, but if
you vi ewed source, you'd have seen | have a techspecs page |ink commented
out, that’Il get that sort of info, when/if | actually get it created

However, since you asked, your answer, and a bit nore, by way of
expl anation. ..

I should really create a page listing all the little Gentoo adm n scripts
I"ve cone up with and how | use them |'msure a few fol ks anyway woul d
likely find them useful.

The idea behind nost of themis to create shortcuts to having to type in
long energe lines, with all sorts of arbitrary conmand |ine paraneters

The majority of these fall into two categories, ea* and ep*, short for
emerge --ask <additional paranmeters> and energe --pretend Thus,
have epworld and eaworld, the pretend and ask versions of energe -NuDv
wor | d, epsys and easys, the same for system eplog <package>, energe
--pretend --log --verbose (package nane to be added to the comand |ine so
epl og gcc, for instance, to see the changes between ny current and the new
version of gcc), eptree <package>, to use the tree output, etc

One thing I've found is that 1'Il often epworld or eptreeworld, then
ermerge the individual packages, rather than use eaworld to do it. That
way, | can do themin the order I want or do several at a tine if | want
to make use of both CPUs. Because | always use --deep, as | want to keep
nmy dependenci es updated as well, I’mvery often nerging specific
dependencies. There's a small problemw th that, however --oneshot, which
111 always want to use with dependencies to help keep ny world file
uncluttered, has no short form but | use it as the default! OTOH, the
normal portage node of adding stuff listed on the command line to the
world file, | don’t want very often, as nost of the tinme |I'’msinply
updating what | have, so it's all inthe world file if it needs to be
there already anyway. Not a problem Al my regular ea* scriptlets use
--oneshot, so it /is/ my default. |If | *AWMF nmerging sonething new that |
want added to ny world file, | have another family of ea* scriptlets that
do that -- all ending in "2", as in, "NOT --oneshot". Thus, | have a
famly of ea*2 scriptlets.

The regul ars here already know one of my favorite portage features is
FEATURES=bui | dpkg, which | have set in make.conf. That of course gives ne
a collection of binary versions of packages |’'ve already energed, so

can quickly revert to an old version for testing sonething, if | want,
then renmerge the new version once |'ve tested the old version to see if it
has the same bug I'’mworking on or not. To aid in this, | have a

coll ection of eppak and eapak scriptlets. Again, the portage default of
--usepackage (-k) doesn’'t fit my default needs, as if I’musing a binpkg
I usually want to ONLY use a binpkg, NOT nerge fromsource if the package
isn’t available. That happens to be -K in short-form However, it's ny

default, so eapak invokes the -K version. | therefore have eapaK to
invoke the -k version if | don't really care whether it goes from bi npkg
or source.

O course, there are various permutations of the above as well, so | have

eapak2 and eapakK2, as well as eapak and eapaK. For the ep* versions, of
course the --oneshot doesn’t make a difference, so | only have eppak and
eppaK, no eppa?2 scriptlets.

Deep breath... <g>

Al that as a prelimnary explanation to this: Along with the above,

08/02/06 00:07

[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

2 0of 8

have a set of efetch functions, that 1nvoke the -t form so just do the
fetch, not the actual conpile and nmerge, and esyn (there’s already an
esync function in sonething or other | have nmerged so | just call it
esyn), which does emerge sync, then updates the esearch db, then
automatically fetches all the packages that an eaworld would want to
update, so they are ready for me to nerge at ny leisure

Li kewi se, and the real reason for this whole explanation, | /had/ an
"einfo" scriptlet that sinply ran "energe info". This can be very handy
to run, if like ne, you have several slotted versions of gcc merged, and
you sonetinmes forget which one you have esel ected or gcc-configed as the
one portage will use. Likewise, it’s useful for checking on CFLAGS (or
CXXFLAGS OR LDFLAGS or...), if you nodified themfromthe normal ones
because a particul ar package wasn't cooperating, and you want to see if
you renmenbered to switch them back or not.

However, | ran into a problem The output of einfo was too long to
quickly find the npst useful info -- the stuff | nobst often change and
therefore nost often am |l ooking for

No sweat! | shortened ny original "einfo" to sinply "ei", and added a
second script, "eis" (for einfo short), that sinply piped the output of
the usual energe info into a grep that only returned the lines | nost
often need -- the big title one with gcc and sinmilar info, CFLAGS,
CXXFLAGS, LDFLAGS, and FEATURES. USE would al so be useful, but it’'s too
long even by itself to be searched at a glance, so if | want it, | sinply
run ei and |l ook for what | want in the | onger output.

Anot her deep breath... <g>

K, with that as a prelimnary, you should be able to understand the
foll owi ng:

$ei s
Portage 2.1 pre4-r1l (default-Iinux/anml64/2006.0, gcc-4.1.0-beta20060127
glibc-2.3.6-r2, 2.6.15 x86_64)

CFLAGS="-march=k8 -Os -pipe -fonmt-frane-pointer -frenane-registers
-funit-at-a-time -fweb -freorder-bl ocks-and-partition
-fnerge-all -constants”

CXXFLAGS="-march=k8 -0Cs -pipe -fomt-franme-pointer -frename-registers
-funit-at-a-time -fweb -freorder-bl ocks-and-partition
-fnerge-all -constants”

FEATURES="aut oconfi g buil dpkg candy ccache confcache distl ocks
multilib-strict parallel-fetch sandbox sfpermnms strict userfetch”

LDFLAGS="-W, -z, now'
MAKEOPTS="-j 4"
To make sense of that...

* The portage and glibc versions are ~anmd64, as set in nake.conf for the
systemin general

* CFLAGS:

I choose -Os, optinize for size, because a nobdern CPU and the various
cache levels are FAR faster than main nenory. This difference is
frequently severe enough that it’'s actually nore efficient to optimze for
size than for CPU performance, because the result is smaller code that

nmai ntai ns cache locality (stays in fast cache) far better, and the CPU
saves nmore time that it would otherw se be spending idle, waiting for data
to cone in fromslower nore distant menory, than the actual cost of the
loss of cycle efficiency that’'s often the tradeoff for small code.

-8, and to a lessor extent, -O2, do things like turn a | oop that executes
a fixed nunber of say 3 tinmes, into "faster" code, by avoiding the junp at
the end of each loop back to the top of the loop by witing it out as
inline code, copying the loop instructions three tines. This process
would in our exanple of a 3-time fixed execution | oop, save the expensive
junmp back to the top of the loop two tines -- but at the SAME tine would
expand that section of code to three times its |ooped size

Back when nenory operated at or near the speed of the CPU, avoiding the
| oop, even at the expense of three-tines the code, was often faster.
Today, where CPUs do several calculations in the tine it takes to fetch

08/02/06 00:07

[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

30f 8

data trommain nmenory, 1t's generally taster to go tor the smaller code
as it will be far nore likely to still be in fast cache, avoiding that
long wait for main nmenory, even if it /does/ nean wasting a couple

addi tional cycles doing the expensive junmp back to the top of the | oop.

O course, this is theory, and the practical case can and will differ
depending on the instructions actually being conpiled. In particular
stream ng nmedi a apps and medi a encodi ng/ decoding are likely to still
benefit fromthe traditional |oop elimnation style optim zations, because
they run thru so much data already, that cache is routinely trashed
anyway, regardless of the size of your instructions. As well, that type
of application tends to have a LOT of |ooping instructions to optim zel

By contrast, something like the kernel will benefit nore than usual from
size optim zation. First, it’'s always nenory | ocked and as such
can’'t be swapped, and even "slow' main menory is still **MANY** **MANY**

times faster than swap, so a snaller kernel neans nore other stuff fits
into main memory with it, and isn't swapped as much. Second, parts of the
kernel such as task scheduling are executed VERY often, either because
they are frequently executed by nost processes, or because they /control/
t hose processes. The snaller these are, the nore likely they are to stil
be in cache when next used. Likew se, the smaller they are, the |less

potentially still useful other data gets flushed out of cache to nmake room
for the kernel code executing at the monent. Third, while there’'s a |lot
of kernel code that will loop, and a lot that's essentially stream ng, the

kernel as a whole is a pretty good nmix of code and thus won’t benefit as
much from | oop optimzations and the |ike, as conpared to special purpose
code like the media codec and stream ng applications above.

The differences are marked enough and now denonstrated enough that a
kernel config option to optimze for size was added | believe about a year
ago. Evidently, that lead to even MORE denpbnstration, as the option was
originally in the obscure enbedded optim zati ons corner of the config,
where few would notice or use it, and they upgraded it into a main option.
In fact, where a year or two ago, the option didn't even exist, now I
believe it defaults to yes/on/do-optimize-for-size (altho it’s possible
I"mincorrect on the last and it's not yet the default).

According to the gcc nanpage, -frenane-regi sters causes gcc to attenpt to
make use of registers left over after normal register allocation. This is
particularly beneficial on archs that have many registers (keeping in
mnd that "registers" are what anpbunts to LO cache, the fastest possible
nenory because the CPU accesses registers directly and they operate at
full CPU speed. Unfortunately, registers are also very limted, naking

t hem an EXCEEDI NGLY val uabl e resource! Note that while x86-32 is noted
for its relative /lack/ of registers, AMD basically doubl ed the number of
registers available to 64-bit code in its x86-64 aka AMD64 spec. Thus,
while this option wouldn’t be of particular benefit on x86, on and64, it
can, depending on the code of course, provide sone rather serious

optim zation!

-fweb is a register use optimnizer function as well. It tells gcc to
create a /web/ of dependenci es and assign each individual dependency web
to its own pseudo-register. Thus, when it conmes tine for gcc to allocate
registers, It already has a list of the best candidates |ined up and ready
to go. Conmbined with -frename register to tell gcc to efficiently make
use of any registers left over after the the first pass, and due to the
number of registers available in 64-bit nmode on our arch, this can allow
sonme seriously powerful optimzations. Still, a couple of things to note
about it. One, -fweb (and -frenanme-registers as well) can cause data to
nove out of its "honme" register, which seriously conplicates debugging, if
you are a programrer or power-user enough to worry about such things.

Two, the rewite for gcc 4.0 significantly nodified the functionality of
-fweb, and it wasn’'t recomrended for 4.0 as it didn’t yet work as well as
expected or as it did with gcc 3.x. For gcc 4.1, -fweb is apparently back
toits traditional strength. Those Gentoo users having gcc 3.4, 4.0, and
4.1, all three in separate slots, will want to note this as they change
gcc-configuratiions, and nmodify it accordingly. Yes, this *IS* one of the
reasons my CFLAGS change so frequently!

-funit-at-a-time tells gcc to consider a full logical unit, perhaps

consi sting of several source files rather than just one, as a whol e, when
it does its compiling. O course, this allows gcc to nmake

optim zations it couldn’t see if it wasn't |ooking at the larger picture
as a whole, but it requires rather nore nenory, to hold the entire unit

so it can consider it at once. This is a fairly new flag, introduced with
gcc 3.3 IIRC. Wiile the idea is sinple enough and shouldn’t lead to any
bugs on its own, there WERE a nunber of initially never encountered bugs
in various code that this flag exposed, when GCC nade optinm zations on the
entire unit that it wouldn’t otherw se make, thereby triggering bugs that

08/02/06 00:07

[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

4 of 8

had never been triggered betore. | /belileve/ this was the root reason why
the Gentoo and64 technotes originally discouraged use of -G0s, back with
the first introduction of this flag in gcc 3.2 hammer (and64) edition, as
-funit-at-a-time was activated by -Cs at that tine, and -0Os was known to
produce bad code at the tinme, on and64, with packages |i ke portions of

KDE. The gcc 4.1.0 manpage now says it’'s enabled by default at -O2 and
-8, but doesn't nention -Os. Wether that’s an om ssion, or whether they
decided it shouldn’t be enabled by -OGs for sone reason, |I'mnot sure, but

I use themboth to be sure and haven’'t had any issues | can trace to this
(not even back when the technotes reconmended against -QOs, and said KDE
was supposed to have trouble with it -- naybe it was parts of KDE | never
nmerged, or maybe | was just lucky, but 1’ve sinply never had an issue with
it).

-freorder-bl ocks-and-partition is new for gcc 4.0, | believe, alto

didn’t discover it until | was reading the 4.1-beta nmanpage. | KNOW gcc
3.4.4 fails out with it, saying unrecognized flag or sone such, so it’'s
anot her of those flags that cause ny CFLAGS to be constantly changing, as
I switch between gcc versions. This flag won’t work under all conditions,
according to the manpage, so is automatically disabled in the presence of
exception handling, and a few other situations naned in the nanpage. It
causes a lot of warnings too, to the effect that it’s being disabled due
to X reason. There's a simlar -freorder-blocks flag, which optimzes by
reordering blocks in a function to "reduce nunber of taken branches and
improve code locality." In English, what that neans is that it breaks
caching less often. Again, caching is *EXTREMELY* performance critical,
so anything that breaks it less often is CERTAINLY wel come! The
-and-partition increases the effect, by separating the code into
frequently used and |less frequently used partitions. This keeps the nost
frequently used code all together, therefore keeping it in cache far nore
efficiently, since the | ess used code won’t be constantly pulled in,
forcing out frequently used code in the process.

Hm .. As I'mwiting and thinking about this, the probability that
sticking the regular -freorder-blocks option in CFLAGS as well would be a
wi se thing, occurs to ne. The non-partition version isn't as efficient as
the partition version, and would be redundant if the partitioned version
is in effect. However, the non-partitioned version doesn’'t have the sane
sorts of no-exceptions-handler and simlar restrictions, so having it in
the list, first, so the partitioned version overrides it where it can be
used, should be a good idea. That way, where the partitioned version can

be used, it will be, but where it can’t, gcc will still use the
non-partitioned version of the option, so I'll still get /sone/ of the
optim zations! | (re)conpiled nmajor portions of xorg (modular), qt, and

the new kde 3.5.1 with the partitioned option, however, and it works, and
I haven't tested having both options in there yet, so |'’mnot sure it’l
work as the theory suggests it should, so sone caution nmght be advised

-fnerge-all -constants COULD be dangerous with SOVE code, as it breaks part
of the C/ C++ specification. However, it should be fine for nbst code
witten to be conpiled with gcc, and |I've seen no problens /yet/ tho both
this and the reorder-and-partition flag above are fairly new to nmy CFLAGS,
so haven’'t been as extensively personally tested as the others have been.
If something seens to be breaking when this is in your CFLAGS, certainly
it’s the first thing 1'd try pulling out. Wat it actually does is merge
all constants with the same value into the sane one. gcc has a weaker
-fnmerge-constants version that’'s enabled with any -O option at all (thus
at -0 -2, -3, AND -Gs), that merges all declared constants of the sane
value, which is safe and doesn't conflict with the C++ spec. Wat the
/all/ specifier in there does, however, is cause gcc to nmerge decl ared
vari abl es where the val ue actually never changes, so they are in effect
constants, altho they are declared as variables, with other constants of
the same value. This /should/ be safe, /provided/ gcc isn't failing to
detect a variable chance sonewhere, but it conflicts with the C/ C++ spec,
according to the gcc manpage, and thus /coul d/ cause issues, if the

devel oper pulls certain tricks that gcc woul dn’t detect, or possibly nore
likely, if used with code conpiled by a different conpiler (say

bi nary-only applications you may run, which may not have been conpil ed
with gcc). There are two reasons why | choose to use it despite the
possible risks. One, | want /small/ code, again, because snall code fits
in that all-inportant cache better and therefore runs faster, and
obviously, two or nore nerged constants aren’t going to take the space
they would if gcc stored them separately. Two, the risks aren’'t as bad if
you aren’t running non-gcc conpiled code anyway, and since |'’ma strong
believer in Software Libre, if it’s binary-only, there's very little

chance 1I'lIl want or risk it on ny box, and everything | do run is gcc
conpi |l ed anyway, so should be generally safe. Still, | know there nmay be
instances where I'Il have to reconpile with the flag turned off, and am

prepared to deal with them when they happen, or I'd not have the flag in
my CFLAGS.

08/02/06 00:07

[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

5o0f 8

And, here's sone selected output fromei, interspersed with explanations
since I'"mediting the output anyway:
$ei

1l Failed to change nice value to '-2’
'l [Errno 13] Pernission denied

This is stderr output. It’s not
redirect stderr to /dev/null for
and amtrying to be brief.

n the eis output above because
t

i
it, as | know the reason for the error

The warning is because |’ musing PORTAGE_NI CENESS=-2 in make.conf. It has
a negative nice set there to encourage portage to nmake fuller use of the
dual CPUs under- X/ from a- konsol e-session, as X and the kernel do sone
dynam ¢ scheduling magic to keep X nore responsive without having to up
/its/ priority. The practical effect of that "magic" is to | ower the
priorities of everything besides X slightly, when X is running. This

/ does/ have the intended effect of keeping X nore responsive, but the cost
as observed here is that enmerges take longer than they should when X is
runni ng, because the scheduler is leaving a bit of extra idle CPUtime to
keep X responsive. In nmany cases, |'d rather be using maxi num CPU and get
the merges done faster, even if X drags a bit in the nmean time, and the
slightly negative niceness for portage acconplishes exactly that.

It’s reporting a warning (to stderr) here, as | ran the conmand as a
regul ar non-root user, and non-root can’'t set negative priorities for

obvi ous system security reasons. | get the sane warning with ny ep*
conmmands, which | normally run as a regular user, as well. The ea*
commands whi ch actually do the nerging get run as root, naturally, so the
ni ceness /can/ be set negative when it counts, during a real emerge

So... nothing of any real matter, then

11l Relying on the shell to |ocate gcc, this may break
111 DI STCC, installing gcc-config and setting your current gcc
11 profile will fix this

Anot her warning, likewise to stderr and thus not in the eis output. This
one is due to the fact that eselect, the eventual systemw de replacenent
for gcc-config and a nunber of other comuands, uses a different nethod to
set the conpiler than gcc-config did, and portage hasn’t been adjusted to
full conpatibility just yet. Portage finds the proper gcc just fine for
itself, but there'd be problens if distcc was involved, thus the warning

Again, |I'maware of the situation and the cause, but don’t use distcc, so
it’s nothing | have to worry about, and | can safely ignore the warning

| kept the warnings here, as | find them and the explanation behind them
interesting el ements of ny Gentoo environment, thus worth posting, for
others who seeminterested in ny Gentoo environnent as well. [|f nothing
el se, the explanations should help some in nmy audi ence understand that bit
nore about how their system operates, even if they don't get these
war ni ngs.

ed-r defaul t-1inux/and64/2006.0, gcc-4.1.0-beta20060127

Portage 2.1 pre4-rl (
r2, 2.6.15 x86_64)

1
glibc-2. 3. 6-

System unane: 2.6.15 x86_64 AMD Opteron(tn) Processor 242
Gent oo Base Systemversion 1.12.0 prel5

Those of you runni ng stable and64, but wondering where basel ayout is for
unstabl e, there you have it!

ccache version 2.4 [enabl ed]
dev- 1 ang/ pyt hon: 2.4.2
sys- apps/ sandbox: 1.2.17
sys-devel /fautoconf: 2

sys-devel /automake: 1.4 p6, 1.5, 1.6.3, 1.7.9-r1, 1.8.5-r3, 1.9.6-r1
sys-devel /binutils: 2.16.91.0.1
sys-devel /1i bt ool : 1
virtual / os- headers: 2

ACCEPT_KEYWORDS="and64 ~and64"

Sane for the above portions of ny toolchain. AFAIR it’'s all ~and64,
altho | was running a still-masked binutils for awhile shortly after

08/02/06 00:07

[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

6 of 8

gcc-4.0 was released (still-nmasked on Gentoo as well), as 1t required the
newer binutils.

LANG="en_US"

LDFLAGS="-W, -z, now'

Sone of you may have noticed the occasional Portage warning about a SETU D
execut abl es using |l azy bindings, and the potential security issue that
causes. This setting for LDFLAGS forces early bindings with al

dynamically linked libraries. Normally it’'d only be necessary or
recommended for SETUI D executables, and set in the ebuild where it's safe
to do so, but | use it by default, for several reasons. The effect is
that a programtakes a bit longer to load initially, but won't have to
pause to resolve late bindings as they are needed. You're trading waiting
at executable initialization for waiting at sone other point. Wth a gig
of menory, | find nost stuff | run nore than once is at |east partially
still in cache on the second and | ater |aunches, and with ny system |
don't normally find the initial wait irritating, and sonetines find a
pause after I'mworking with a programespecially so, so | prefer to have
everything resol ved and | oaded at executable | aunch. Additionally, wth

lazy bindings, |I’'ve had programs start just fine, then fail |ater when
they need to resolve sone function that for some reason won't resolve in
whatever library it’'s supposed to be coming from | don't |ike have the

thing fail and interrupt me in the mddle of a task, and find it far |ess
frustrating, if it’s going to fail when it tries to | oad sonething, to
have it do so at |aunch. Because early bindings forces resolution of
functions at launch, if it’s going to fail loading one, it'll fail at
launch, rather than after |'ve started working with the program That’'s
/exactly/ how | want it, so that's why I run the above LDFLAGS setting
It’s nice not to have to worry about the security issue, but SETU D type
security isn't as critical on ny single-human-user system where that
single-user-is ne and | already have root when | want it anyway, as it’'d
be in a multi-user system particularly a public server, so the other
reasons are nore inportant than security, for nme, on this. They just
happen to coincide, so |'’ma happy canper. =8")

The caveat with these LDFLAGS, however, is the rare case where there's a
circul ar functional dependency that’'s normally sel f-resol ving, Modul ar
xorg triggers one such case, where the nonolithic xorg didn't. There are
three individual ebuilds related to nmodul ar xorg that | have to renove
these LDFLAGS for or they won't work. xorg-server is one

xf86-vidio-ati, ny video driver, is another. libdri was the third, IlRC
There's a specific order they have to be conpiled in, as well. If they are
conpiled with this enabled, they, and consequently X, refuses to |load (tho
Xwll load without DRI, if that's the only one, it’ll just protest in the
log and DRI and glx aren’t available). Evidently there’'s a non-critica
fourth nodul e somewhere, that still won’t |oad properly due to an

unresol ved synbol, that | need to track down and renerge w thout these
LDFLAGS, and that’'s what's keeping GLX fromloading on ny current system
as nmentioned in an earlier post.

LI NGUAS="en"
MAKEOPTS="-]j 4"

The four jobs is nice for a dual-CPU system-- when it works
Unfortunately, the unpack and configure steps are serialized, so the jobs
option does little good, there. To nake nost efficient use of the
avai |l abl e cycles when | have a ot to nerge, therefore, I'll run as many
as five nmerges in parallel. | do this quite regularly with KDE upgrades
like the one to 3.5.1, where | use the split KDE ebuil ds and have

sonmet hing north of 100 packages to nerge before KDE is fully upgraded

I mentioned above that | often run eptree, then ea individual packages
fromthe list. This is how!| acconplish the five nerges in parallel
1"l take a look at the tree output to check the dependencies, and nerge
t he packages first that have several dependencies, but only where those
dependenci es aren’t stepping on each other, thus keeping the parallel
emerges frominterfering with each other, because each one is doing its
own dependencies, that aren’t dependencies of any of the others. After
get as many of those going as | can, I'Il start listing 3-5 individua
packages wi thout deps on the sane ea command line. By the time |'ve
gotten the fifth one started, one of the other sessions has usually
finished or is close to it, so | can start it nerging the next set of

packages. Wth five nmerge sessions in parallel, I'"mnornmally running an
average load of 5 to 9, neaning that many applications are ready for CPU
scheduling time at any instant, on average. |If the |oad drops bel ow four,

there's proobably idle CPU cycles being wasted that could ot herw se be
conpiling stuff, as each CPU needs at |east one |oad-point to stay busy,
pl us usually can schedul e a second one for sone cycles as well, while the
first is waiting for the hard drive or whatever.

08/02/06 00:07

[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

70f 8

(Note that I’mrunning a four-drive RAID, RAID-6, so two-way striped, for
ny main system Raid-0, so 4-way striped, for $PORTAGE_ TMPDI R, so hard
drive latency isn't /nearly/ as high as it would be on a single-hard-drive
system O course, running five nerges in parallel /does/ increase disk
latency sonme as well, but it /does/ seemto keep ny | oad-average in the
target zone and ny idle cycles to a mininum during the nerge period.

Al so note that |1've only recently added t he PORTAGE_NI CENESS val ue above,
and haven’'t gotten it fully tweaked to the best bal ance between
interactivity and emerge speed just yet, but from observations so far,
with the niceness value set, I'll be able to keep the systembusy with

"only" 3-4 parallel nerges, rather than the 5 1 had been having to run to
keep the system nost efficiently occupied when | had a lot to nerge.)
PKGDI R="/ pkg"

PORTAGE_TMPDI R="/ t np"

PORTDI R="/ p"

PORTDI R_OVERLAY="/1/ p"
Here you can see some of ny path customi zation

USE="and64 7zip X ab2

aac acpi alsa apmarts asf audiofile avi bash-conpletion berkdb

bi t map-fonts bzi p2 caps cdparanoia cdr crypt css cups curl dga divx4linux
dl | oader dri dts dv dvd dvdr dvdread eds enmboss encode extrafilters fam
fame ffnpeg flac font-server foomaticdb gdbmgif glibc-omtfp gpm
gstreaner gtk2 idn inagenagick imib ithreads jp2 jpeg jpeg2k kde
kdeenabl efinal lcns |i bww |inuxthreads-tls | msensors |ogitech-nmuse
logrotate lzo lzw I zwtiff mad maildir mknod njpeg mmg notif nozilla np3
npeg ncurses network no-old-linux nolvml nonmirrors nptl nptlonly offensive
ogg opengl oss pampcre pdflib perl pic png ppds python qt quicktinme
radeon readline scanner slang speex spell ssl tcltk theora threads tiff
truetype truetype-fonts typel typel-fonts usb userlocal es vcd vorbis
xconposite xine xinerama xm 2 xms xosd xpm xrandr xv xvid yvi2 zlib
elibc_glibc input_devices_keyboard input_devi ces_nouse kernel _|inux

li nguas_en userland_GNU vi deo_cards_ati "

My USE flags, FWAR (for what they are worth). O particular interest are
the input_devi ces_nouse and keyboard, and video_cards_ati. These come
fromvariables (I NPUT_DEVI CES and VI DEO CARDS) set in make.conf, and used
in the new xorg-nodul ar ebuilds. These and the others listed after zlib
are referred to by Gentoo devs as USE EXPAND. Effectively, they are USE
flags in the formof variables, setup that way because there are rather
many possi bl e values for those variables, too nmany to work as USE fl ags.
The LI NGUAS and LANG USE_EXPAND variabl es are prime exanpl es. Consi der
how many di fferent |anguages there are and that were used and docunent ed
as regular USE flags, it would have to be in use.local.desc, because few
supporting packages would offer the same choices, so each would have to be
listed separately for each package. Tal k about the nunber of USE fl ags
qui ckly getting out of control

Unset: ASFLAGS, CTARGET, EMERGE DEFAULT_OPTS, LC ALL
OK, sone | oose ends to wapup, and |’ m done

re: gcc versions: The plan is for gcc-4.0 to go ~arch fairly soon, now.
The devs are actively asking for bug reports involving it, now, so as nany
as possible can be resolved before it goes ~arch. (Fornerly, they were
recommendi ng that bugs be filed upstream and not with Gentoo unless there
was a patch attached, as it was considered entirely unsupported, just
there for those that wanted it anyway.) At this point, nearly everything
shoul d conpile just fine with 4.0.

That said, Gentoo has slotted gcc for a reason. |It’'s possible to have
multiple mnor versions (3.3, 3.4, 4.0, 4.1) nmerged at the sane tine.
Wth USE=rmultislot, that’s actually mcroversion (4.0.0, 4.0.1, 4.0.2...)
Using either gcc-config or eselect conpiler, and discounting any CFLAG
switching you may have to do, it’'s a sinple matter to switch between
nerged versions. This nmade it easy to experinment with gcc-4.0 even tho
Gentoo wasn't supporting it and certain packages wouldn't conpile with
4.x, because it was always possible to switch to a 3.x version if
necessary, and conpile the package there. | did this quite regularly,
using gcc-4.0 as ny normal version, but reverting for individual packages
as necessary, when they wouldn’t conpile with 4.0.

The same now applies to the 4.1.0-beta-snapshot series. Oher than the
conpile tinme necessary to conpile a new gcc when the snapshot comes out
each week, it’'s easy to run the 4.1-beta as the main system conpiler for
as wide testing as possible, while reverting to 4.0 or 3.4 (I don't have a
3.3 slot nerged) if needed

08/02/06 00:07

[gentoo-amadb4| Rre: rRe: Wow! KDE 3.0.1 & Xorg 7.0 w/ Composite

8 of 8

re: the performance inprovenents | saw that started this whol e thing:
These trace to several things, | believe. #1, with gcc-4.0, there’'s now
support for -fvisibility -- setting certain functions as exported and
visible externally, others not. That can easily cut exported synbols by a
factor of 10. Exported synmbols of course affect dynamic |oad-tine, which
of course gets magnified dramatically by ny LDFLAGS early binding
settings. Wien | first conpiled KDE with that (there were several

m ssteps early on in terns of KDE and Gentoo’s support, but that aside),
KDE appl oad tines went down VERY NOTI CEABLY! Again, due to ny LDFLAGS,
the effect was nultiplied dramatically, but the effect is VERY real!

O course, that's mainly | oad-time performance. The run-tine performance
that we are actually tal king here has other explanations. A big one is
that gcc-4 was a HUGE rewite, with a Bl G potential to DRAVATI CALLY
improve gcc's performance. Wth 4.0, the theory is there, but in
practice, it wasn't all that optim zed just yet. |In sone ways it reverted
behavi or bel ow that of the fairly mature 3.x series, altho the rewite
made things much sinpler and |l ess prone to error given its maturity. 4.1,
however, is the first 4.x release to REALLY be hitting the potential of
the 4.x series, and it appears the difference is very noticeable. O
course, there’'s a reason 4.1.0 is still in beta upstream and not supported
by Gentoo either, as there are still known regressions. However, where it
wor ks, which it seenms to do /npbst/ of the tinme, it **REALLY** works, or at
| east that's been nmy observation. 3.3 was a MAJOR inprovenent in gcc for
amd64 users, because it was the first version where anmd64 wasn’t sinply an
add-on hack, as it had been with 3.2. The 3.4 upgrade was mnor in
conparison, and 4.0 while it’s going ~arch shortly, and sets the stage for
a lot of future inprovenent, will be pretty minor in terns of actual

i mproved performance as well. 4.1, however, when it is finally fully
rel eased, has the potential to be as big an inprovenent as 3.3 was -- that
is, a HUGE one. |'mcertainly looking forward to it, and nmeanwhil e,

runni ng the snapshots, because Gentoo nakes it easy to do so while
mai ntaining the ability to switch very sinply between nultiiple versions
on the system

Both -freorder-bl ocks-and-partition and -fnerge-all-constants are new to
me within a few days, now, and newto me with kde 3.5.1. Nornally,

i ndividual flags won't make /that/ nmuch of a difference, but it’s possible
I hit it lucky, with these. Actually, because they both match very well
with and reinforce ny strategy of targeting size, it's possible I'monly
now unl ocking the real potential behind size optimzation. -- | **KNOM*
there's a **HUGE** difference in sizes between resulting file-sizes. |
conpared 4.0.2 and 4. 1. 0-beta-snapshot file sizes for several nodul ar-X
files in the course of researching the mssing synbols problem and the

di fference was often a shrinkage of near 33 percent with 4.1 and ny
current CFLAGS as opposed to 4.0.1 without the new ones. Going the other
way, that’'s a 50%larger file with 4.0.2 as conpared to 4.1, 100KB vs
150KB, by way of exanple. That's a *HUGE* difference, one big enough to
initially think I'd found the reason for the m ssing symbols right there,
as the new files were sinply too nuch smaller to | ook workable! Still, |1
traced the problemtoo LDFLAGS, so that wasn’'t it, and the files DO work,
confirmng things. |'mguessing -fnerge-all-constants plays a significant
part in that. |In any case, with that difference in size, and know ng how
/' much/ cache hit vs. miss affects perfornance, it’'s quite possible the
size is the big performance factor. O course, even if that’s so, |’ mnot

sure whether it is the CFLAGS or the 4.0 vs 4.1 that should get the credit.

In any case, |'’ma happy canper right now =8")

Duncan - List replies preferred. No HTM. nsgs.

"Every nonfree programhas a lord, a master --

and if you use the program he is your master." Richard Stallnman in
http://wwv. | inuxdevcenter.com pub/a/linux/2004/12/22/rns _interview htmn

gent 0o- and64@ent 0co. org mailing |ist

08/02/06 00:07

